Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.380
Filter
1.
Rev. neurol. (Ed. impr.) ; 78(7): 179-183, Ene-Jun, 2024. mapas, tab
Article in Spanish | IBECS | ID: ibc-232185

ABSTRACT

Introducción: Las miopatías relacionadas con el receptor de rianodina de tipo 1 (RYR1-RM) constituyen la categoría más frecuente de miopatías congénitas. La introducción de técnicas genéticas ha cambiado el paradigma diagnóstico y sugiere la prioridad de estudios moleculares sobre biopsias. Este estudio busca explorar las características clinicoepidemiológicas de pacientes con variantes del gen RYR1 en un hospital pediátrico de tercer nivel con el objetivo de ampliar la comprensión de la correlación genotipo-fenotipo en las RYR1-RM. Pacientes y métodos: Estudio observacional, descriptivo y transversal, de pacientes menores de 14 años con síntomas miopáticos y variantes potencialmente patógenas del gen RYR1 entre enero de 2013 y diciembre de 2023, considerando variables como sexo, edad, desarrollo motor, variantes genéticas, patrón de herencia y otras manifestaciones. Todas las variables fueron tabuladas frente a la variante genética. Resultados: De los nueve pacientes incluidos, la incidencia estimada fue de aproximadamente 1/10.000 nacidos vivos. La mediana en el momento del diagnóstico fue de 6 años, con una variabilidad fenotípica significativa. Se observaron síntomas comunes, como debilidad y retraso del desarrollo motor. Las variantes genéticas afectaron al gen RYR1 de manera diversa, y hubo cinco variantes previamente no descritas. La biopsia muscular se realizó en cinco pacientes, en dos de ellos de tipo miopatía central core; en uno, multiminicore; en uno, desproporción congénita de fibras; y en otro, de patrón inespecífico. Conclusiones: Las RYR1-MR de nuestra serie ofrecieron variabilidad fenotípica y de afectación, con una incidencia en nuestra área de en torno a 1/10.000 recién nacidos. La mayoría de los casos fueron varones, de variantes missense dominantes. Aportamos cinco variantes genéticas no descritas con anterioridad.(AU)


Introduction: Ryanodine receptor type 1-related myopathies (RYR1-RM) represent the most prevalent category of congenital myopathies. The introduction of genetic techniques has shifted the diagnostic paradigm, suggesting the prioritization of molecular studies over biopsies. This study aims to explore the clinical and epidemiological characteristics of patients with RYR1 gene variants in a tertiary pediatric hospital, intending to enhance the understanding of the genotype-phenotype correlation in RYR1-RM. Patients and methods: An observational, descriptive, and cross-sectional study was conducted on patients under 14 years old with myopathic symptoms and potentially pathogenic RYR1 gene variants from January 2013 to December 2023. Variables such as gender, age, motor development, genetic variants, inheritance pattern, and other manifestations were considered. All variables were tabulated against the genetic variant. Results: Of the nine included patients, the estimated incidence was approximately 1 in 10,000 live births. The median age at diagnosis was six years, with significant phenotypic variability. Common symptoms such as weakness and delayed motor development were observed. Genetic variants affected the RYR1 gene diversely, including five previously undescribed variants. Muscle biopsy was performed in five patients, revealing central core myopathy in two, multiminicore in one, congenital fiber-type disproportion in one, and a nonspecific pattern in another.(AU)


Subject(s)
Humans , Male , Female , Child , Muscular Diseases/classification , Ryanodine Receptor Calcium Release Channel , Incidence , Inheritance Patterns , Epidemiology, Descriptive , Cross-Sectional Studies , Genetic Association Studies
2.
Front Cardiovasc Med ; 11: 1332557, 2024.
Article in English | MEDLINE | ID: mdl-38559670

ABSTRACT

Background: Evidence from observational studies suggests that chronic hepatitis B (CHB) is associated with cardiovascular disease (CVD). However, results have been inconsistent and causality remains to be established. We utilized two-sample Mendelian randomization (MR) to investigate potential causal associations between CHB and CVD, including atherosclerosis, coronary heart disease, hypertension, and ischemic stroke. Methods: The analysis was conducted through genome-wide association studies (GWAS), considering chronic hepatitis B as the exposure and cardiovascular disease as the endpoint. The primary method for evaluating causality in this analysis was the inverse-variance weighted (IVW) technique. Additionally, we employed the weighted median, MR-Egger regression, weighted mode, and simple mode methods for supplementary analyses. Finally, heterogeneity tests, sensitivity analyses, and multiple effects analyses were conducted. Results: In a random-effects IVW analysis, we found that genetic susceptibility to chronic hepatitis B was associated with an increased risk of atherosclerosis [OR = 1.048, 95% CI (1.022-1.075), P = 3.08E-04], as well as an increased risk of coronary heart disease [OR = 1.039, 95% CI (1.006-1.072), P = 0.020]. However, it was found to be inversely correlated with ischemic stroke risk [OR = 0.972, 95% CI (0.957-0.988), P = 4.13E-04]. There was no evidence that chronic hepatitis B was associated with hypertension [OR = 1.021, 95% CI (0.994-1.049), P = 0.121]. Conclusion: Our research indicates that chronic hepatitis B has a correlation with an elevated risk of developing atherosclerosis and coronary heart disease, while it is associated with a decreased risk of experiencing an ischemic stroke.

3.
Front Plant Sci ; 15: 1360729, 2024.
Article in English | MEDLINE | ID: mdl-38562560

ABSTRACT

Cassava brown streak disease (CBSD) poses a substantial threat to food security. To address this challenge, we used PlantCV to extract CBSD root necrosis image traits from 320 clones, with an aim of identifying genomic regions through genome-wide association studies (GWAS) and candidate genes. Results revealed strong correlations among certain root necrosis image traits, such as necrotic area fraction and necrotic width fraction, as well as between the convex hull area of root necrosis and the percentage of necrosis. Low correlations were observed between CBSD scores obtained from the 1-5 scoring method and all root necrosis traits. Broad-sense heritability estimates of root necrosis image traits ranged from low to moderate, with the highest estimate of 0.42 observed for the percentage of necrosis, while narrow-sense heritability consistently remained low, ranging from 0.03 to 0.22. Leveraging data from 30,750 SNPs obtained through DArT genotyping, eight SNPs on chromosomes 1, 7, and 11 were identified and associated with both the ellipse eccentricity of root necrosis and the percentage of necrosis through GWAS. Candidate gene analysis in the 172.2kb region on the chromosome 1 revealed 24 potential genes with diverse functions, including ubiquitin-protein ligase, DNA-binding transcription factors, and RNA metabolism protein, among others. Despite our initial expectation that image analysis objectivity would yield better heritability estimates and stronger genomic associations than the 1-5 scoring method, the results were unexpectedly lower. Further research is needed to comprehensively understand the genetic basis of these traits and their relevance to cassava breeding and disease management.

4.
Endocrine ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565797

ABSTRACT

BACKGROUND: Thyroid cancer and educational attainment have been related in observational studies. It is unclear if these correlations indicate causative relationships. METHODS: Using large-scale genome-wide association studies (GWAS) datasets, we conducted an univariable and multivariable Mendelian randomization (MR) study to assess a potential connection between educational attainment and thyroid cancer. The inverse-variance weighted (IVW) analysis method is used as our primary outcome. Additionally, we carry out several sensitivity analyses to evaluate the pleiotropy and robustness of the causal estimates. RESULTS: Univariate MR study shows 4.2 years of additional education is associated with a 41.4% reduction in thyroid cancer risk (OR = 0.586; 95% CI: 0.378-0.909; P = 0.017). Further multivariable MR analysis revealed that body mass index (BMI) acted as a partial mediating factor in the protective impact of higher educational attainment against thyroid cancer. CONCLUSION: This MR study provided genetic evidence that longer education attainment is related to a lower risk of thyroid cancer. Strategies of expanding education may reduce the burden of thyroid cancer in the world.

5.
Front Plant Sci ; 15: 1268847, 2024.
Article in English | MEDLINE | ID: mdl-38571708

ABSTRACT

In the last century, breeding programs have traditionally favoured yield-related traits, grown under high-input conditions, resulting in a loss of genetic diversity and an increased susceptibility to stresses in crops. Thus, exploiting understudied genetic resources, that potentially harbour tolerance genes, is vital for sustainable agriculture. Northern European barley germplasm has been relatively understudied despite its key role within the malting industry. The European Heritage Barley collection (ExHIBiT) was assembled to explore the genetic diversity in European barley focusing on Northern European accessions and further address environmental pressures. ExHIBiT consists of 363 spring-barley accessions, focusing on two-row type. The collection consists of landraces (~14%), old cultivars (~18%), elite cultivars (~67%) and accessions with unknown breeding history (~1%), with 70% of the collection from Northern Europe. The population structure of the ExHIBiT collection was subdivided into three main clusters primarily based on the accession's year of release using 26,585 informative SNPs based on 50k iSelect single nucleotide polymorphism (SNP) array data. Power analysis established a representative core collection of 230 genotypically and phenotypically diverse accessions. The effectiveness of this core collection for conducting statistical and association analysis was explored by undertaking genome-wide association studies (GWAS) using 24,876 SNPs for nine phenotypic traits, four of which were associated with SNPs. Genomic regions overlapping with previously characterised flowering genes (HvZTLb) were identified, demonstrating the utility of the ExHIBiT core collection for locating genetic regions that determine important traits. Overall, the ExHIBiT core collection represents the high level of untapped diversity within Northern European barley, providing a powerful resource for researchers and breeders to address future climate scenarios.

7.
Hum Reprod ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600622

ABSTRACT

Polycystic ovary syndrome (PCOS) affects 6-20% of reproductive-aged women. It is associated with increased risks of metabolic syndrome, Type 2 diabetes, cardiovascular diseases, mood disorders, endometrial cancer and non-alcoholic fatty liver disease. Although various susceptibility loci have been identified through genetic studies, they account for ∼10% of PCOS heritability. Therefore, the etiology of PCOS remains unclear. This review explores the role of epigenetic changes and modifications in circadian clock genes as potential contributors to PCOS pathogenesis. Epigenetic alterations, such as DNA methylation, histone modifications, and non-coding RNA changes, have been described in diseases related to PCOS, such as diabetes, cardiovascular diseases, and obesity. Furthermore, several animal models have illustrated a link between prenatal exposure to androgens or anti-Müllerian hormone and PCOS-like phenotypes in subsequent generations, illustrating an epigenetic programming in PCOS. In humans, epigenetic changes have been reported in peripheral blood mononuclear cells (PBMC), adipose tissue, granulosa cells (GC), and liver from women with PCOS. The genome of women with PCOS is globally hypomethylated compared to healthy controls. However, specific hypomethylated or hypermethylated genes have been reported in the different tissues of these women. They are mainly involved in hormonal regulation and inflammatory pathways, as well as lipid and glucose metabolism. Additionally, sleep disorders are present in women with PCOS and disruptions in clock genes' expression patterns have been observed in their PBMC or GCs. While epigenetic changes hold promise as diagnostic biomarkers, the current challenge lies in distinguishing whether these changes are causes or consequences of PCOS. Targeting epigenetic modifications potentially opens avenues for precision medicine in PCOS, including lifestyle interventions and drug therapies. However, data are still lacking in large cohorts of well-characterized PCOS phenotypes. In conclusion, understanding the interplay between genetics, epigenetics, and circadian rhythms may provide valuable insights for early diagnosis and therapeutic strategies in PCOS in the future.

9.
Neurol Ther ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592337

ABSTRACT

INTRODUCTION: Recent studies have suggested a potential association between methotrexate use and an increased risk of dementia. However, the causal relationship between methotrexate and dementia remains unclear. This study aims to investigate the potential causal effect of methotrexate use on the risk of dementia using a two-sample Mendelian randomization (TSMR) approach. METHODS: We conducted a TSMR study using summary statistics from genome-wide association studies (GWAS) of methotrexate use and dementia. We obtained genetic instruments for methotrexate use from a large-scale GWAS meta-analysis and genetic instruments for dementia from a separate GWAS meta-analysis. We performed several statistical analyses, including inverse-variance weighted (IVW), weighted median (WM1), weighted mode (WM2), and MR-Egger regression methods, to estimate the causal effect of methotrexate on dementia risk. RESULTS: Our TSMR analysis showed a significant positive association between genetic predisposition to methotrexate use and dementia risk. The IVW method estimated a causal odds ratio (OR) of 0.476 [95% confidence interval (CI) 0.362-0.626] per unit increase in the log odds ratio of methotrexate use. WM1, WM2, and MR-Egger methods provided consistent results. CONCLUSION: The findings of this mendelian randomization (MR) study suggest a potential causal effect of methotrexate use on the risk of dementia. However, further research is needed to validate these findings and explore the underlying mechanisms. Since methotrexate is widely prescribed for various autoimmune diseases, a better understanding of its potential impact on dementia risk is crucial for optimizing treatment strategies and addressing potential adverse effects.

10.
Sleep ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38571402

ABSTRACT

Although genome wide association studies (GWAS) have identified loci for sleep-related traits, they do not directly uncover the underlying causal variants and corresponding effector genes. The majority of such variants reside in non-coding regions and are therefore presumed to impact cis-regulatory elements. Our previously reported 'variant-to-gene mapping' effort in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs), combined with validation in both Drosophila and zebrafish, implicated PIG-Q as a functionally relevant gene at the insomnia 'WDR90' GWAS locus. However, importantly that effort did not characterize the corresponding underlying causal variant. Specifically, our previous 3D genomic datasets nominated a shortlist of three neighboring single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium within an intronic enhancer region of WDR90 that contacted the open PIG-Q promoter. We sought to investigate the influence of these SNPs collectively and then individually on PIG-Q modulation to pinpoint the causal "regulatory" variant. Starting with gross level perturbation, deletion of the entire region in NPCs via CRISPR-Cas9 editing and subsequent RNA sequencing revealed expression changes in specific PIG-Q transcripts. Results from individual luciferase reporter assays for each SNP in iPSCs revealed that the region with the rs3752495 risk allele induced a ~2.5-fold increase in luciferase expression. Importantly, rs3752495 also exhibited an allele specific effect, with the risk allele increasing the luciferase expression by ~2-fold versus the non-risk allele. In conclusion, our variant-to-function approach and in vitro validation implicates rs3752495 as a causal insomnia variant embedded within WDR90 while modulating the expression of the distally located PIG-Q.

11.
Front Cell Dev Biol ; 12: 1381920, 2024.
Article in English | MEDLINE | ID: mdl-38566827

ABSTRACT

Introduction: Despite the abundance of research indicating the participation of immune cells in prostate cancer development, establishing a definitive cause-and-effect relationship has proven to be a difficult undertaking. Methods: This study employs Mendelian randomization (MR), leveraging genetic variables related to immune cells from publicly available genome-wide association studies (GWAS), to investigate this association. The primary analytical method used in this study is inverse variance weighting (IVW) analysis. Comprehensive sensitivity analyses were conducted to assess the heterogeneity and horizontal pleiotropy of the results. Results: The study identifies four immune cell traits as causally contributing to prostate cancer risk, including CD127- CD8+ T cell %CD8+ T cell (OR = 1.0042, 95%CI:1.0011-1.0073, p = 0.0077), CD45RA on CD39+ resting CD4 regulatory T cell (OR = 1.0029, 95%CI:1.0008-1.0050, p = 0.0065), CD62L- Dendritic Cell Absolute Count (OR = 1.0016; 95%CI:1.0005-1.0026; p = 0.0039), CX3CR1 on CD14+ CD16- monocyte (OR = 1.0024, 95%CI:1.0007-1.0040, p = 0.0060). Additionally, two immune cell traits are identified as causally protective factors: CD4 on monocyte (OR = 0.9975, 95%CI:0.9958-0.9992, p = 0.0047), FSC-A on plasmacytoid Dendritic Cell (OR = 0.9983, 95%CI:0.9970-0.9995, p = 0.0070). Sensitivity analyses indicated no horizontal pleiotropy. Discussion: Our MR study provide evidence for a causal relationship between immune cells and prostate cancer, holding implications for clinical diagnosis and treatment.

12.
Plants (Basel) ; 13(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38611470

ABSTRACT

Red crown rot (RCR) disease caused by Calonectria ilicicola negatively impacts soybean yield and quality. Unfortunately, the knowledge of the genetic architecture of RCR resistance in soybeans is limited. In this study, 299 diverse soybean accessions were used to explore their genetic diversity and resistance to RCR, and to mine for candidate genes via emergence rate (ER), survival rate (SR), and disease severity (DS) by a multi-locus random-SNP-effect mixed linear model of GWAS. All accessions had brown necrotic lesions on the primary root, with five genotypes identified as resistant. Nine single-nucleotide polymorphism (SNP) markers were detected to underlie RCR response (ER, SR, and DS). Two SNPs colocalized with at least two traits to form a haplotype block which possessed nine genes. Based on their annotation and the qRT-PCR, three genes, namely Glyma.08G074600, Glyma.08G074700, and Glyma.12G043600, are suggested to modulate soybean resistance to RCR. The findings from this study could serve as the foundation for breeding RCR-tolerant soybean varieties, and the candidate genes could be validated to deepen our understanding of soybean response to RCR.

13.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612412

ABSTRACT

This study conducted phenotypic evaluations on a wheat F3 population derived from 155 F2 plants. Traits related to seed color, including chlorophyll a, chlorophyll b, carotenoid, anthocyanin, L*, a*, and b*, were assessed, revealing highly significant correlations among various traits. Genotyping using 81,587 SNP markers resulted in 3969 high-quality markers, revealing a genome-wide distribution with varying densities across chromosomes. A genome-wide association study using fixed and random model circulating probability unification (FarmCPU) and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) identified 11 significant marker-trait associations (MTAs) associated with L*, a*, and b*, and chromosomal distribution patterns revealed predominant locations on chromosomes 2A, 2B, and 4B. A comprehensive annotation uncovered 69 genes within the genomic vicinity of each MTA, providing potential functional insights. Gene expression analysis during seed development identified greater than 2-fold increases or decreases in expression in colored wheat for 16 of 69 genes. Among these, eight genes, including transcription factors and genes related to flavonoid and ubiquitination pathways, exhibited distinct expression patterns during seed development, providing further approaches for exploring seed coloration. This comprehensive exploration expands our understanding of the genetic basis of seed color and paves the way for informed discussions on the molecular intricacies contributing to this phenotypic trait.


Subject(s)
Genome-Wide Association Study , Triticum , Triticum/genetics , Bayes Theorem , Chlorophyll A , Seeds/genetics
14.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612637

ABSTRACT

Psoriasis is a chronic inflammatory skin disease, the prevalence of which is increasing. Genetic, genomic, and epigenetic changes play a significant role in the pathogenesis of psoriasis. This review summarizes the impact of epigenetics on the development of psoriasis and highlights challenges for the future. The development of epigenetics provides a basis for the search for genetic markers associated with the major histocompatibility complex. Genome-wide association studies have made it possible to link psoriasis to genes and therefore to epigenetics. The acquired knowledge may in the future serve as a solid foundation for developing newer, increasingly effective methods of treating psoriasis. In this narrative review, we discuss the role of epigenetic factors in the pathogenesis of psoriasis.


Subject(s)
Genome-Wide Association Study , Psoriasis , Humans , Psoriasis/genetics , Epigenomics , Skin , Epigenesis, Genetic
15.
Cell Genom ; 4(4): 100539, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604127

ABSTRACT

Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in summary statistics from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. For example, MUSSEL has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architecture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be needed to generate the most robust PRSs across diverse populations.


Subject(s)
Bivalvia , Multifactorial Inheritance , Humans , Animals , Multifactorial Inheritance/genetics , Genome-Wide Association Study/methods , Bayes Theorem , Phenotype , 60488
16.
Genome Biol ; 25(1): 93, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605417

ABSTRACT

Unraveling bacterial gene function drives progress in various areas, such as food production, pharmacology, and ecology. While omics technologies capture high-dimensional phenotypic data, linking them to genomic data is challenging, leaving 40-60% of bacterial genes undescribed. To address this bottleneck, we introduce Scoary2, an ultra-fast microbial genome-wide association studies (mGWAS) software. With its data exploration app and improved performance, Scoary2 is the first tool to enable the study of large phenotypic datasets using mGWAS. As proof of concept, we explore the metabolome of yogurts, each produced with a different Propionibacterium reichii strain and discover two genes affecting carnitine metabolism.


Subject(s)
Genome-Wide Association Study , Multiomics , Phenotype , Genes, Bacterial , Genomics
17.
Dev Psychopathol ; : 1-14, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654405

ABSTRACT

Early-life adversity as neglect or low socioeconomic status is associated with negative physical/mental health outcomes and plays an important role in health trajectories through life. The early-life environment has been shown to be encoded as changes in epigenetic markers that are retained for many years.We investigated the effect of maternal major financial problems (MFP) and material deprivation (MD) on their children's epigenome in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Epigenetic aging, measured with epigenetic clocks, was weakly accelerated with increased MFP. In subsequent EWAS, MFP, and MD showed strong, independent programing effects on children's genomes. MFP in the period from birth to age seven was associated with genome-wide epigenetic modifications on children's genome visible at age 7 and partially remaining at age 15.These results support the hypothesis that physiological processes at least partially explain associations between early-life adversity and health problems later in life. Both maternal stressors (MFP/MD) had similar effects on biological pathways, providing preliminary evidence for the mechanisms underlying the effects of low socioeconomic status in early life and disease outcomes later in life. Understanding these associations is essential to explain disease susceptibility, overall life trajectories and the transition from health to disease.

18.
Am J Hum Genet ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38636510

ABSTRACT

Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation software to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-frequency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages additional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R2, corresponding to 85-218 K variant gains. We further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide significant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency variants.

19.
Stat Med ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38636557

ABSTRACT

Massive genetic compendiums such as the UK Biobank have become an invaluable resource for identifying genetic variants that are associated with complex diseases. Due to the difficulties of massive data collection, a common practice of these compendiums is to collect interval-censored data. One challenge in analyzing such data is the lack of methodology available for genetic association studies with interval-censored data. Genetic effects are difficult to detect because of their rare and weak nature, and often the time-to-event outcomes are transformed to binary phenotypes for access to more powerful signal detection approaches. However transforming the data to binary outcomes can result in loss of valuable information. To alleviate such challenges, this work develops methodology to associate genetic variant sets with multiple interval-censored outcomes. Testing sets of variants such as genes or pathways is a common approach in genetic association settings to lower the multiple testing burden, aggregate small effects, and improve interpretations of results. Instead of performing inference with only a single outcome, utilizing multiple outcomes can increase statistical power by aggregating information across multiple correlated phenotypes. Simulations show that the proposed strategy can offer significant power gains over a single outcome approach. We apply the proposed test to the investigation that motivated this study, a search for the genes that perturb risks of bone fractures and falls in the UK Biobank.

20.
Hemoglobin ; : 1-12, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637280

ABSTRACT

Sickle cell anemia (SCA) is the most common cause of stroke in children. As it is a rare disease, studies investigating the association with complications like stroke in SCD have small sample sizes. Here, we performed a systematic review and meta-analysis of the studies exploring an association of genetic variants with stroke to get a better indication of their association with stroke. PubMed and Google Scholar were searched to identify studies that had performed an association analysis of genetic variants for the risk of stroke in SCA patients. After screening of eligible studies, summary statistics of association analysis with stroke and other general information were extracted. Meta-analysis was performed using the fixed effect method on the tool METAL and forest plots were plotted using the R program. The random effect model was performed as a sensitivity analysis for loci where significant heterogeneity was observed. 407 studies were identified using the search term and after screening 37 studies that cumulatively analyzed 11,373 SCA patients were included. These 37 studies included a total of 2,222 SCA patients with stroke, predominantly included individuals of African ancestry (N = 16). Three of these studies performed whole exome sequencing while 35 performed single nucleotide-based genotyping. Though the studies reported association with 132 loci, meta-analyses could be performed only for 12 loci that had data from two or more studies. After meta-analysis we observed that four loci were significantly associated with risk for stroke: -α3.7 kb Alpha-thalassemia deletion (P = 0.00000027), rs489347-TEK (P = 0.00081), rs2238432-ADCY9 (P = 0.00085), rs11853426-ANXA2 (P = 0.0034), and rs1800629-TNF (P = 0.0003396). Ethnic representation of regions with a high prevalence of SCD like the Mediterranean basin and India needs to be improved for genetic studies on associated complications like stroke. Larger genome-wide collaborative studies on SCD and associated complications including stroke need to be performed.

SELECTION OF CITATIONS
SEARCH DETAIL
...